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ABSTRACT 

A method is presented f o r  performing vehicle  wind response s tud ie s  
including the e f f e c t s  of va r i a t ions  in  vehicle  data  such a s  aerodynamic 
and mass cha rac t e r i s t i c s .  These va r i a t ions  a r e  combined i n  such a manner 
as t o  y i e l d  a 99.87 percent probabi l i ty  value f o r  the maximum bending 
moment experienced by the vehicle when f ly ing  through a determinis t ic  
wind p ro f i l e .  A step-by-step procedure is  presented f o r  calculat ing the 
moment and o ther  f l i g h t  dynamics parameters. 
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TECHNICAL MEMORANDUM X-53042 

A TECHNIQUE FOR INCLUDING THE EFFECTS OF VEHICLE 
PARAMETER VARIATIONS I N  WIND RESPONSE STUDIES 

SUMMARY 

A method i s  presented fo r  performing vehic le  wind response s tudies  
including the e f f e c t s  of va r i a t ions  i n  vehic le  da ta  such a s  aerodynamic 
and mass cha rac t e r i s t i c s .  These var ia t ions  are combined i n  such a manner 
as t o  y ie ld  a 99.87 percent probabi l i ty  value fo r  the maximum bending 
moment experienced by the vehicle  when f ly ing  through a de te rminis t ic  
wind p ro f i l e .  A step-by-step procedure i s  presented fo r  calculat ing the 
moment and other  f l i g h t  dynamics parameters. 



I. INTRODUCTION 

In  the past  much mystery and doubt have surrounded the " roo t - sF -  
square" procedure employed by the Aero-As trodynamics Laboratory inGom- 
puting r ig id  body wind responses fo r  use i n  in - f l i gh t  load calculation's-? 
There has been some c r i t i c i s m  t h a t  the technique i s  a worst-on-worst 
case s o r t  of thing r e su l t i ng  i n  much too conservative values fo r  wind 
induced loads. Some of t h i s  c r i t i c i sm i s  j u s t i f i e d ,  bu t  much of it 
s t e m s  from a misunderstanding of what the procedures r e a l l y  are .  
e l iminate  the l a t t e r  type of c r i t i c i sm and perhaps reduce the former, 
these procedures w i l l  be explained i n  d e t a i l  i n  t h i s  report .  

To 

A rigid-body, constant coef f ic ien t ,  two-degrees-of-freedom model 
i s  assumed fo r  the vehicle .  Using t h i s  model, a s t a t i s t i c a l  ana lys i s  
i s  performed which combines the e f f e c t s  of va r i a t ions  in  random param- 
e t e r s ,  such as  the center-of-pressure and center-of-gravity locat ions,  
on the peak vehicle  bending moment. The wind disturbance i s  assumed t o  
be determinis t ic  and might be, for  example, a p r o f i l e  constructed from 
95 percent wind speed and 99 percent wind shear data ,  although t h i s  
pa r t i cu la r  choice is  not necessary. 

The analysis  y ie lds  a 3-0 value fo r  the peak bending moment (with 
proper assumptions) and a l s o  gives values for  the random parameters 
which w i l l  cause the  3-0 peak moment t o  occur. A s  a by-product, the 
angle of a t tack,  engine gimbal angle, e t c . ,  causing the 3-0 value for  
the moment are  a l s o  obtained. 
procedure which can be implemented on a computer t o  obta in  numerical 
values. 

The r e s u l t s  are given i n  terms of a 

Although the ana lys i s  is based on a s implif ied model of the r i g i d  
vehicle ,  wind response s tud ie s  performed using the r e s u l t i n g  technique 
can be conducted using a six-degrees-of-freedom, constgnt coe f f i c i en t  
model without introducing s ign i f i can t  e r ror .  Also, the procedure is 
appl icable  t o  a model which includes s losh and bending dynamics. 

The use of s t a t i s t i c a l  techniques i n  analyzing l inear ized  systems 
i s  discussed in  Appendix A. These a r e  standard techniques which can be 
found i n  any textbook on the subject ,  but a r e  included here fo r  complete- 
ness. Included is a der iva t ion  of the 3-0 or  so-called root-sum-square 
value. 

I n  the  tex t ,  a discussion i s  given of how the s t a t i s t i c a l  approach 
can be used to compute a 3-CJ o r  root-sum-square value fo r  the bending 
moment. 
s l i g h t  change i n  concept from that i n  Appendix A. 
cedure is given for  computing the design bending moment together with 
corresponding angle of a t t ack  and gimbal angle. 

The root-sum-square der iva t ion  i s  again included because of a 
A step-by-step pro- 
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11. WIND RESPONSE STUDIES 

Computer s tud ies  are performed using a six-degrees-of-freedom 
d i g i t a l  simulation with time-varying coef f ic ien ts  i n  the vehic le  equa- 
tions-of-motion. However, experience has shown that l i t t l e  e r r o r  i s  
introduced by studying the system a t  d i f f e r e n t  time in t e rva l s  on the  
f l i g h t  t r a j ec to ry  with ve loc i ty  and 3 j n a i c  pressure f ixed and motion 
considered i n  only a s ing le  plane. 
only two degrees of freedom, e.g., yaw r o t a t i o n  about the c.g. and 
t r ans l a t ion  l a t e r a l  t o  the  reference f l i g h t  plane. 

Such a s impl i f i ca t ion  r e s u l t s  i n  

To s implify the s t a t i s t i c a l  analysis  of the e f f e c t  of parameter 
per turbat ions on wind responses, t he  s implif ied representa t ion  of the 
vehic le  motion w i l l  be used. 
from t h i s  s implif ied model, the wind response s tud ie s  u s h g  these 
r e s u l t s  can be performed with the six-degrees-of-freedom model. 

However, although the r e s u l t s  a r e  obtained 

The two-degrees-of-freedom constant coe f f i c i en t  equations, together 
with de f in i t i ons  of symbols, are given i n  Appendix B. 
i n  Appendix B are the  random parameters which are usua l ly  var ied t o  
determine s t a t i s t i c a l  values f o r  t he  response var iab les .  

Also appearing 

The wind is  not  considered a s  a random perturbat ion.  I n  Aero- 
Astrodynamics Labqratory control  s t u d i e s ,  a de te rminis t ic  representa t ion  
of the wind is obtained by constructing wind p r o f i l e s  using 95 percent 
wind speed values  with 99 percent shear and embedded gus t  values. The 
shear and embedded gus t  values a r e  reduced by 15 percent t o  allow fo r  
the  f a c t  t h a t  t he  p o s s i b i l i t y  of a 99 percent gus t  occurring a t  the 
a l t i t u d e  a t  which the wind peaks, while simultaneously the  wind is build- 
ing up through 99 percent shear values, is  very remote. The reduced 
embedded gus t  is  superimposed on the wind p r o f i l e  a t  the time f o r  which 
the  peak wind occurs. 

I n  designing the  vehic le ' s  s t ruc ture ,  one is  normally in t e re s t ed  
i n  the  peak values of angle of a t tack,  gimbal angle,bending moment, e tc . ,  
which w i l l  be experienced when the vehicle  responds t o  the wind. Because 
of t h e  uncertainty i n  the calculat ions of center  of pressure loca t ion ,  
cen ter  of g rav i ty  loca t ion ,  t o t a l  aerodynamic force,  etc., it i s  neces- 
s a r y  t o  include a margin of s a fe ty  in  the  design da ta  so t h a t  there  is  
an assurance t h a t  these uncer ta in t ies  w i l l  not cause the vehic le  t o  
f a i l .  

The one funct ion of the vehicle response va r i ab le s  which gives 
the  b e s t  ind ica t ion  of the  aerodynamic load s i t u a t i o n  is  the maximum 
bending moment. 
the veh ic l e  length and i s  thus the  bending moment a t  a pa r t i cu la r  
vehicle s ta t ion .  I n  addi t ion,  however, i n  considering the  dynamic e f f e c t  

Here, the maximum is understood t o  be calculated over 
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of the  vehicle 's  response t o  winds, the peak value (maximum over time) 
of the maximum bending moment is s igni f icant .  This peak bending moment 
is, i n  f a c t ,  the  bes t  measure t h a t  a control  engineer has of the  s t ruc-  
t u re ' s  reac t ion  t o  wind disturbances. 

Consequently, the s t a t i s t i c a l  approach i s  d i rec ted  toward deter-  
mining the  e f f ec t  of var ia t ions  i n  the random parameters on the peak 
bending moment. 
cent probabi l i ty  l eve l  of peak bending moment is  sought r a the r  than 
taking worst-on-worst case var ia t ions  for  the parameters. 

To avoid ultra-conservative designs, a 3-0 or  99.87 per-  

III. ROOT- SUM- SQUARE BENDING MOMENT ,t 

A 3-a value fo r  the  peak value of the maximum bending moment is com- 
puted as follows: We have fo r  the  bending moment a t  the s t a t i o n  for  
which the maximum occurs, 

where M& is  the bending moment coe f f i c i en t  due t o  angle of a t tack ,  
x1 = xcp, x2 = Q, and the remaining x ' s  are the  other  parameters with 
spreads such as X a ,  4 3 ,  F, etc. ,  (see Appendix B). 
MB i s  considered as an e x p l i c i t  function of M& and the x ' s  with M& a 
funct ion of x1 and x2. 
moment is selected because i t  r e s u l t s  i n  a s impl i f ica t ion  of the com- 

W e  w i l l  assume M' bending putat ions required fo r  ca lcu la t ing  MB 
moment coef f ic ien t  due t o  gimbal angle, i s  not  a f fec ted  by he param- 
e t e r  var ia t ions  because these e f f e c t s  are usua l ly  small. 

In equation (l), 

This choice of dependence fo r  the bending 

e, rss' 

A 3-a value f o r  MB w i l l  be computed using the f i r s t  order l i n e a r  
approximation t o  MB, i.e., 

where N denotes nominal o r  mean value. 

I n  terms of a and p the  bending moment i s  (see Appendix'B) 

% = Mk a + MI B p, 

* For a more de ta i led  der iva t ion  of the roo t  sum square va r i ab le ,  
see Appendix A. 
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where we assume that the nonlinear aerodynamics appear by making M& 
dependent on angle of a t tack .  
a, t h a t  value f o r  which M bx occurs. 

We consider here  only a s ing le  value of 
Thus, 

aM; AM; = - 
3x1 

- -  %3 
&' - a  
a 

Ax,. Yx a x ,  + -  
ax, 

N N 

and evaluated a t  the nominal 

which i s  the maximum value of the  angle of a t t a c k  f o r  the nominal 
vehicle .  (a and p peak a t  the same time with no ac tua to r  lags,  thus 
giving a l s o  the peak moment a t  t h a t  time.) 

Also, we have with va r i a t ions  a t  the  nominal point  

Thus , 

Since we consider B& an independent va r i ab le  i n  the above expression 
f o r  MB, the par t ia l ;  i n  the  sum &lB/axi, a r e  computed holding M& con- 
s t a n t .  

Being ab le  t o  compute the p a r t i a l s ,  

while  holding M' constant a t  i t s  nominal value,  i s  an important point ,  a 
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because i t  allows a s ign i f i can t  s impl i f ica t ion  i n  the  machine computa- 
t ions  required fo r  obtaining the  rss bending moment. M' constant means 
the approximations t o  the pa r t i a l s  &./axi can be computed using aero- 
dynamic load d i s t r ibu t ions ,  corresponding t o  only a s ing le  angle of 
a t tack ,  q~. Thus, a bending moment rss value can be computed without 
requir ing M' as an e x p l i c i t  funct ion of a. Furthermore, M& need be 
computed bo% with and without parameter per turbat ions using the max 
nominal angJe of a t t ack  only. 

a! 
$ 

The square of the moment va r i a t ion  is  

The variance is  

where a l l  terms with mi Dxj, i # j, vanish i f  we assume the  x's a r e  
s t a t i s t i c a l l y  independent. 
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Taking the  approximation t o ,  the  p a r t i a l s  

N 

- %X i -- 
&i N 

where each of these va r i a t ions  a r e  taken with a l l  parameters a t  t h e i r  
nominal values,  we obtain 

where 

Multiplying by 9,  the ( 3 ~ ) ~  moment deviat ion is  

7 



Now taking &xi - - 30Xi when computing the p a r t i a l s ,  we  obtain 

k 
r-1 

Thus, the 30 o r  root  sum square bending moment is 

where the posi t ive root  is used i f  M > 0 and the negative root  i f  
M% < 0. 
l i t y  level .  

BN 
With the xi normally d i s t r ibu ted ,  t h i s  i s  a 99.87% probabi- 

I V ,  DETERMINATION OF CORRESPONDING VARIABLES 

I n  computing the values of other  var iab les ,  such as angle of 
a t tack ,  engine gimbal angle, etc. ,  corresponding t o  the  M B ~ ~ ~  case,  
bas i ca l ly  the same procedure is  followed as i n  Appendix A. 
a maximum value for  MB ( M k , )  i s  computed by simultaneously taking 
30 values for each parameter xi, denoted by (3a )h i ,  and i n  such a 

d i rec t ion  a s  t o  increase the magnitude of the bending moment. 
r a t i o ,  A,  is determined 

That is ,  

Then the 
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- %  rss MB 
A =  

% a x - ”  
(4) 

and va r i a t ions  A (30) 
of motion. hi 

taken f o r  each parameter x i  i n  the equations 

To obtain the M& value resu l t ing  from these va r i a t ions ,  one might 
recompute M& using an aerodynamic load d i s t r i b u t i o n  which gives  

x = x + A (313)~ and xcN = xcNN + A (313)~ . 
CN CP CPN CP 

Then t h i s  new M’ value,  together with va r i a t ions  A (3u )h i  i n  the  equa- 
t ions  of motion (Appendix B) ,  could be used t o  compute the M B ~ ~ ~  and 
i t s  corresponding a, p, etc .  , However, t o  avoid t h i s  addi t iona l  M& com- 
putat ion,  a f i r s t  order approximation t o  M& is  obtained using equa- 
t i o n  (2). 

a 

I n  t h i s  manner, using the  approximations for  the p a r t i a l  der iva t ives ,  
we ob ta in  

Thus, taking Oxi = ( 3 0 ) ~ ~ ’  

This change i n  M& should be used in  computing M 
either added o r  subtracted from M& depending o&Ge s ign  which r e s u l t s  
when (3a) and (313) a r e  chosen t o  maximize MB. 

and t h i s  w i l l  be 

m1 h 2  
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In determining the corresponding a, f3, etc . ,  we take M i  = A (30laxi. 
Substituting into equation (5) yields 

Hence, this change from the nominal is used for Iv& in determining cor- 
responding values for the parameters. 

That this procedure should yield approximately the M B ~ ~ ~  is seen 
from the following: 

The linear approximation gives, for M B ~ ~ ~ ,  

+ 
i= 1 

A(3a) . 
&i N 

Regrouping the factors 

i= 1 
A (30) 

hi 
N 
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Now with the  approximate values f o r  the pa r t i a l s  

This equation states t h a t  the  va r i a t ion  i n  M& caused by the A ( 3 ~ )  

and A (30) 
curl 

var ia t ions  can be approximated by taking the v a r i a t i o n  
Ax2 

i n  M' when computing M a B r s s '  

I V. STEP-BY-STEP PROCEDURE FOR COMPUTING M B ~ ~ ~  

Summarizing, the following procedure is used i n  computing an rss 
bending moment : 

(1) Using wind p r o f i l e s  constructed from 95% wind speed 
values with 99% shears and gus t  reduced by 15%,compute 
the response f o r  t h e  nominal vehicle.  

Using the nominal kx obtained frbm s t e p  (l), compute 
M& using a load d i s t r i b u t i o n  including nonlinear aero- 
dynamics corresponding t o  t h i s  maximum angle of a t tack.  
The load d i s t r ibu t ion  should give nominal xcp and CN 
corresponding t o  the angle-of-attack value used. 

(2) 

(3) Using the  same kx, obta in  the load d i s t r i b u t i o n  which 
gives  the 3-0 value fo r  xcp. 

t h i s  load d is t r ibu t ion .  Then %,= - M&. 

Compute Gcp = kl using 

- - M&+= (1 + K) M& where K is  a spec i f ied  (4) Take M' 
%CN 

constant. (K = -06 f o r  Saturn I B  and Saturn V a t  t h i s  
writing.) Then LW&. = K M&. 4 
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Using the  nominal value of M& obtained i n  s t e p  (21, corn- 
pute MBN = M& kx + Mb hax, where %ax and bx a r e  

fo r  the nominal vehicle .  
without ac tua tor  lags.) 

(These occur a t  the same time 

Using M&, compute the  peak bending moment which r e s u l t s  

from a separate  3-a var i a t ion  of each of the parameters 
xi. Denoting t h i s  by MBx i' f ind  m~~~ = MBxi - MBN. 

Compute M B ~ ~ ~  using equation (3) and values obtained i n  
s teps  1 through 6; % i s  the  max a f o r  the nominal vehicle .  

Compute M b x  by simultaneously taking 3-0 var i a t ions  i n  
each of the x i  i n  a d i r ec t ion  which w i l l  mayimize the 
moment. Use &l& as defined i n  equation (6). Compute 

A =  
M h a x  - MSN 

Multiply each 3-a value f o r  ki by A and use &I& as 

defined i n  equation (7). 
worst d i r ec t ion  as i n  s t e p  8 ,  and compute the bending 
moment using the vehic le  equations of motion (Appendix B). 

Take these k i -va lues  i n  t h e i r  

This bending moment w i l l  be approximately equal t o  the rss value. 
The values for  a, p, etc . ,  obtained i n  computing MB using the vehic le  
equations, a r e  the a, p, etc . ,  corresponding t o  M B ~ ~ ~ -  



APPENDIX A 

STATISTICAL APPROACH 

This appendix 
l i n e a r  funct ion of 
of probabi l i ty  are 

derives the root-sum-square.value of a general  non- 
several  random variables .  &.ly very elementary laws 
required f o r  the  development. 

Af te r  presenting the  fundamental ideas and de f in i t i ons  of probabi l i ty  
theory which are required,  a f i r s t -o rde r  l i n e a r  approximation t o  a non- 
l i n e a r  funct ion of several raodom var iab les  i s  used t o  compute a 3-a o r  
99.87 percent probabi l i ty  value f o r  the  function. The random var iab les  
are assumed s t a t i s t i c a l l y  independent and normally d i s t r ibu ted  about 
t h e i r  means. With the  l i n e a r i t y  approxiInation,the function i t s e l f  i s  
normally d i s t r ibu ted  about i ts  mean. This 3-a value is  then r e l a t ed  t o  
the root-sum-square value fo r  the  function. 

Fundamental Ideas 

Given k random var iab les  X i ,  i = 1, 2, k, with probabi l i ty  dens i t i e s  
p i  ( X i )  the  mean value of X i  i s  defined as 

-03 

and the  var iance 

-m 

where E [XI reads the expected value of x. 

I f  the random var iab le  is  normally d i s t r ibu ted ,  i t  i s  w e l l  known 
t h a t  these two var iab les ,  the mean and variance,  completely determine 
the  s t a t i s t i c a l  cha rac t e r i s t i c s  of t he  random variable .  In  what follows, 
a l l  random var iab les  are assumed normally d is t r ibu ted .  

Repeated use w i l l  be made of the  fo'llowing proposit ions i n  the  
discussion: 

n n 

E [, 1 aixi] = 1 E[aixi] = 
i-1 i= 1 i= 1 

wi th  the  a i  constant weighting factors .  



i f  x and y a re  s t a t i s t i c a l l y  independent random variables .  
laws is  e a s i l y  derived from the d e f i n i t i o n  of E[x] using bas i c  l aws  Of 
probabi l i ty  together with s u f f i c i e n t  r e g u l a r i t y  requirements on the  pro- 
b a b i l i t y  densi ty  functions. 

Each of these 

Functions of Random Variables - I ts  Mean and Variance 

Suppose we have f (xl, . . . q) defined with nice proper t ies  (which 
i s  always assumed i n  supe r f i c i a l  treatments such a s  the one here) on the  
range of the  random variablgs  xi. 
E[f{(X, ..., xk) - Mf)*I = of. 

We seek E [f(xl ,  ... x i ) ] =  Mf and 

In general ,  f i s  a nonlinear funct ion of the xi. However, f o r  
small var ia t ions  of the X i  from t h e i r  mean, i.e., ( x i  - Mxi) small, we 
can obtain a f irst  order approximation t o  the  mean and var iance of f i n  
the following manner: 
(Ifxl, ..., Mxk) = M, expand f i n  a Taylor s e r i e s  about t h i s  point.  
g ives  (with x = (xl, ..., xk)) 

Assuming f ana ly t i c  i n  a neighborhood of the point  
This 

where 

Dropping all the higher order terms i n  the expansion, we obtain 

Now using proposit ions (A-1) and (A-2), together  with representa t ion  (A-3) 
f o r  f ( x ) ,  we can determine the mean and var iance of f .  
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For the mean of f ,  we obtain 

r e su l t i ng  from using proposit ions (A-1) and (A-2). 
is  not  random; therefore ,  it i s  s t a t i s t i c a l l y  independent of (xi - Ki). 
I n  f a c t ,  E[fxi(Mx)] = f x i h ) .  

Note t h a t  fxi(Mx) 

Again using proposi t ion (A-1) 

Hence , 

Mf = E[f(x)]  = E[f&)]  = f h )  = f(Mxl, ..., sk). (A-4) 

Thus, the mean value of f is  the value of the funct ion evaluated a t  the 
mean or nominal values  of the  random var iab les .  

For the var iance of f ,  

= E[f"(x)] - 2f&) E[f(x)] + f2(Mx). 

Since E[f (x)] = f (Mx) from (A-4) , we have 

0; = E[f"(x)] - f2&). (A-5 1 
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Now, computing E[f2(x)],  

k 

f2&) + 2f(Mx) 1 fxi(Mx) (x i  - Mxi) 
i= 1 

The second term i s  zero s ince E(xi - Mxi) = 0. Hence, 
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Therefore, from (A-5) 

+ f Wx> fX.WX> abi - MX.1 (Xj - M X j ) I .  
xi J 1 

i, j=1 
i# j 

Since E [ ( X i  - & . ) 2 ? 3  = oz.,  and since 
1 1 

with x i  and x s t a t i s t i c a l l y  independent, we obtain fo r  the var iance j 

O r  f o r  the  standard deviat ion of f 

A 3-0 deviat ion i s  

3 U f  = ,J fZiCM"' (30XiI2 
i= 1 

(A-7) 
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With our l i n e a r  approximation t o  f ,  we have f normally d i s t r ibu ted  
about i t s  mean f(Mx); hence, we'have 99.87 percent probabi l i ty  t h a t  

1 

I n  t h i s  manner, i f  we use the term on the extreme r i g h t  of the inequal i ty  
as the c r i t i c a l  value o r ,  say, design value f o r  the funct ion f ,  we a r e  
designing t o  a 3-cr probabi l i ty  case. 
roo t  should be  used t o  g e t  the design value, 

I f  f(Mx) is negative,  t he  negative 

Summarizing, the mean of f is the value of t he  function evaluated 
a t  the  mean o r  nominal values of the parameters, and the  standard deriva- 
t i on  f o r  f is  given by (A-8). 
t i on  t o  f ,  i t s  d i s t r i b u t i o n  is  Gaussian, and the 3-u value corresponds 
t o  a 99.87 percent probabi l i ty  leve l .  

Since we have used the l i n e a r  approxima- 

Re  1 a t  ions hip of Var iance t o  Root- Sum- Square Value 

Suppose now w e  obtain a fu r the r  approximation t o  the previous 
ca lcu la t ions  by the  following: Take 

where Afi denotes the  change i n  f f o r  a mi-change i n  xi. I n  f a c t ,  

l im 

Also, take 
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Then 

This gives  as a 99.87 percent probabi l i ty  case 

With Mxi the  nominal values  of the  parameters, which is the case, the 
tern on the  r i g h t  is the  so-called root-sum-square value which has been 
used previously i n  control  s tud ies  as  the design value. 
sum-square va lue  of the function w i l l  not  be exceeded 99.87 percent of 
the  time . 

Thus, the  root-  

Corresponding Values f o r  Related Functions 

Often, i n  the  control  s tud ies ,  i t  is necessary t o  determine what 
value of p, f o r  example, i s  required t o  obtain qSs i n  the vehic le  
response t o  the  wind. Thus, the p, together with simultaneous values  
of t he  o ther  system var iab les ,  must s a t i s f y  the  d i f f e r e n t i a l  equations 
f o r  t he  vehic le  while a assumes i t s  rss value. 

Our problem i n  doing t h i s  on the computer can be thought of i n  the  
following manner. 
of t h e  random var iab les ,  g(xl, ..., xk), where f and g a r e  r e l a t ed ,  bu t  
the  funct ional  re la t ionship ,  g = g ( f ) ,  is not known exp l i c i t l y .  W e  have 
computed the 3-a or  r s s  value f o r  f ,  and the problem i s  t o  determine 
w h a t  value g has when f assumes i t s  3-a value. 

We have a function g given e x p l i c i t l y  as a funct ion 

There are many ways of solving t h i s  problem. In the wind response 
s tud ie s ,  the  following procedure is used: L e t  be the  3-0 varia-  
t i o n  i n  the  parameter xi. 
abso lu te  maximum (worst-on-worst case) f o r  f 

Then, using equation (A-3), we obta in  a s  an 

%k) + 
fmax = f&,, ... 

i- 1 
(A- 10) 
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Instead of using (A-3) f o r  t h i s  ca lcu la t ion ,  one might use the computer 
and the actual  nonlinear function. Now, using the rss value,  the equa- 
l i t y  i n  (A-9), for  f ,  we have 

f r s s  = f MX1, y M.k' + 
i- 1 

Define 

n A =  

(A-11) 

(A- 12) 

Note t h a t  A is a number t h a t  we can compute a f t e r  computing (A-10) and 
(A-11). 

Consider now, a v a r i a t i o n  A ( A Y S ~ ) ~ ~  i n  each parameter x i ,  where 
these va r i a t ions  a r e  again taken i n  a d i r ec t ion  which w i l l  maximize f 
with A fixed, i.e., using the  f i r s t  order approximation, 

Since A is  p o s i t i v e  and independent of the  summation index, i t  f ac to r s ;  
and subs t i t u t ing  from (A-12), 

Obtaining fmax - f w x )  from (A-lo), 
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Thus, the rss value of f to  a first order approximation is  obtained by 
taking A(&i)30 as the variation on each X i .  Consequently, the corres- 
ponding value of g is  
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APPENDIX B 
TWO DEGREES-OF-FREEDOM RIGID BODY EQUATIONS 

The two-degrees-of-freedom equations of planar motion are 

The following are considered to have independent random perturbations 
from their nominal values-with normal distributions. 

X1 = X = center of pressure location 
CP 

X, = % ,  = total aerodynamic normal force 

X3 = X = center of gravity location 
cg 

X, = I = moment of inertia 

X, = ng = thrust vector misalignment 

X6 = F = thrust variation 

x, = a. = attitude error gain 

X, = bo = angle-of-attack gain. 
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The tolerance,  or allowable spread, on each parameter i s  assumed .to be 
a 3-0 deviation. The following symbols are used: 

cp = a t t i t u d e  e r r o r  

@ = a t t i t u d e  e r r o r  rate 

a = angle of a t t ack  

p = engine gimbal angle 

Z = d r i f t  normal t o  reference plane of f l i g h t  

R = t o t a l  t h r u s t  of gimbaled engines 

F = t o t a l  t h rus t  

X = drag 

al = a t t i t u d e  e r r o r  rate gain 

MB = bending moment at a given s t a t i o n  

M h =  change i n  bending moment due t o  a change i n  CX 

M' = change i n  bending moment due t o  a change i n  f3 
B 
W = wind speed 

V = t o t a l  speed of vehicle.  
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